Hybridize experimental and simulated signals to accelerate the creation of database for virtual training tools of UT operators

Incheon

letropolitan City

<u>Benoit Puel (EXTENDE)</u>, Bastien Clausse (EXTENDE)

Ministry of Science and ICT

E VIDENT

20th WCNDT

20th World Conference on Non-Destructive Testing

Songdo Convensia, Incheon, Korea 27-31 May 2024

Contents

Introduction

- Training, certification and skills maintenance
- Teaching and learning UT
- Signal databases
- Hybrid signal database
 - Why
 - Strategy 1: Insertion
 - Strategy 2: Composite fusion

Straight probe application

- Description
- Hybridize
- Robustness to thickness change

Angle probe application

- Description data
- Hybridize

Conclusion

Training, certification and skills maintenance

- Companies need to train and certify quickly and efficiently their NDT controllers
- Controllers must maintain their skills

Limitations

- shipping costs (off-site trainings)
- block manufacturing costs (specific specimens and flaws)
- the lack of existing block (i.e. HTHA samples)

Teaching and learning UT

Signal databases

- Display the signal in **real time** at the **position** and **skew** of the dummy probe
- Need for large storage
- Collect experimental data
 - Need for clean data
 - Requires samples, probes, electronics,...
- Simulate data
 - Need for realistic data
 - Requires all-in-one model and accurate descriptions

EXTENDE

Why hybrid signal database?

	Experimental	Simulation
Pro	Considers all the physics Easy to source wholesome blocks	Easy to add flaws Many types of flaws
Cons	Complex and costly to add flaws Experimental uncertainties	Time consuming to simulate all modes Too perfect

Hybridize

experimental signals for the geometry echoes of the specimen with

simulated signals for the flaws

How to create hybrid signal database?

Composite fusion

page 7

Insertion

Straight probe application

 S_{exp} : Wholesome plate

- Probe: « MSEB » type
 - 4 MHz L wave
 - Dual Element
 - Crystal 3.5 x 10 mm
- Specimen: Plate
 - 20 mm thick
 - Carbon Steel
- Simulated flaw (CIVA): Delamination
 - ~ 25 x 30 mm
 - 15 mm deep
 - with experimental specimen description
 - only L waves (no T wave / mode conversion)

S_{sim}: Delamination

Straight probe hybrid signal database

Insertion

- Discontinuities (amplitude, time of flight & modes)
- **Requires accurate modeling**

Composite fusion

- Account for experimental variations
- Smooth integration
- Compensates for modeling imprecision

page 9

Robustness to thickness changes

 S_{exp} : Wholesome plate 30 mm thick

Insertion

-Scan

 Requires accurate modeling → Cannot apply to plate thickness changes

- S_{sim}: Delamination at 15 mm deep in 20 mm thick plate Composite fusion
 - Smooth integration
 - Realistic merge of flaw repetition and backwall echoes

B-Scan

Angle probe application

 S_{exp} : Wholesome weld

- Probe: « MWB » type
 - 4 MHz T wave
 - Single Element
 - Crystal 8 x 9 mm
- Specimen: V weld
 - 10 mm thick
 - Carbon Steel
- Simulated flaw (CIVA): LSWF
 - ~ 12 x 5 mm
 - 5.5 mm deep
 - with experimental specimen description
 - only T waves (no L wave / mode conversion)

Angle probe hybrid signal database

Insertion

- Discontinuities
- Requires accurate modeling
- Cannot reproduce weld cap and root variations

Composite fusion

- Comparable to actual flaw
- Smooth integration

Conclusion

- TraiNDE UT is a simulator for controller training and skills maintenance
- Need for modern and flexible training tools
- A Make the most of experimental and simulated signal database

- Composite fusion is a robust method, applicable in real-time
- Integration in progress inside TraiNDE UT (come to test it at our **Booth A16**)
- Will allow to accelerate the creation of exercises for TraiNDE UT

